潘力佳

微电子与光电子学系 博士生导师

个人简历

IEEE senior member;2010年入选教育部新世纪优秀人才;2018年获得国家杰出青年科学基金资助;作为第二完成人获2017年度国家自然科学二等奖、获2016年度江苏省科学技术奖一等奖。

于中国科学技术大学获得博士学位;现任南京大学电子科学与工程学院/国家微结构协同创新中心 教授、博导;
 2011-2012年、2017年5-8月,斯坦福大学,访问学者;
 致力于聚合物电子材料和器件、电子皮肤器件及仿生感知器件领域的研究。在包括Nature Sustainability、Nature Comm.、PNAS、Adv. Mater.、Nano Lett.、ACS Nano、Adv. Funct. Mater.、Energy & Environ. Sci.、Acc. Chem. Res.、IEEE EDL等期刊发表SCI论文200余篇,SCI他引过1万8千次,H因子55,ESI高被引论文14篇。
应邀为科学出版社、Wiley、Elsivier、World Scientific Publication等出版社中英文专著撰写书籍8章节。担任IEEE Journal on Flexible Electronics、Wearable Electronics、Biomimetics、Scientific Reports、《半导体学报》等学术期刊编委。


课题组网站



研究方向

1)柔性压力/温度传感器,电子皮肤,可穿戴电子材料与器件;
2)触觉传感器件及系统
3)生物医学电子器件;
4) 折纸-剪纸电子学及软体机器人;
5) 新原理超轻超薄光、热、力、电、磁阵列成像器件,无线供电、信号传输及其在医用电子学上的应用;
6) 环境、水资源相关电子学。



研究组开展基于问题的研究,欢迎物理、电子、有机(或二维)场效应晶体管及电路、生物医学电子、精密仪器、电路、软体机器人、电子材料等专业的推免生、博士后加入。

主要课程

大三本科生选修课《柔性电子学》,课程编号18060220。


研究生新闻

获得2021年度第49届日内瓦发明展最高奖——特别嘉许金奖

李晟获得2020年度之江实验室第二届国际青年人才基金、中国电子学会集成电路一等奖学金

其他同学获得研究生国家奖学金、微结构协同创新中心奖学金等


代表成果
  • 柔性压力传感器:
    1)An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications 5, 3002 (2014).

    2)  
    Challenges in Materials and Devices of Electronic Skin. ACS Materials Letters 4, 577 (2022).
    3)Flexible Pressure Sensor With High Sensitivity and Low Hysteresis Based on a Hierarchically Microstructured Electrode. IEEE Electron Device Letters 39, 288 (2018).
    4)Fast-response and Low-hysteresis Flexible Pressure Sensor Based on Silicon Nanowires. IEEE Electron Device Letters 39, 1069 (2018).
    5)Coupling Enhanced Performance of Triboelectric-Piezoelectric Hybrid Nanogenerator Based on Nanoporous Film of Poly(vinylidenefluoride)/BaTiO3 Composite Electrospun Fibers. ACS Materials Letters 4, 847 (2022).
    6)Advanced electronic skin devices for healthcare applications. Journal of Materials Chemistry B 7, 165 (2019). (封面文章)
    7)
    Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference.Nature Communications 13, 5839 (2022).
    8) High-Performance Flexible Capacitive Proximity and Pressure Sensors with Spiral Electrodes for Continuous Human-Machine Interaction. ACS Materials Letters 4, 2261 (2022).


  • 多模传感器集成:
    1)All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes. Nano Letters 18, 3322 (2018).(封面文章)
    2)A Nanostructured Conductive Hydrogels-Based Biosensor Platform for Human Metabolite Detection. Nano Letters 15, 1146-1151 (2015).
    3) Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano 7, 3540-3546 (2013).
    4) Highly Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection. Nano Letters 18, 4570(2018).
    5)
    Frequency-enabled Decouplable Dual-modal Flexible Pressure and Temperature Sensor.IEEE Electron Device Letters 41, 1568-1571(2020).
    6) Multiterminal Ionic Synaptic Transistor With Artificial Blink Reflex Function.IEEE Electron Device Letters 42, 351-354(2021).
    7) Flexible Photodetector Arrays Based on Polycrystalline CsPbIBr Perovskite FilmsIEEE Electron Device Letters 45, 621-624(2024).
    8) Highly-Sensitive, Flexible, and Self-Powered UV Photodetectors Based on Perovskites Cs₃Cu₂I₅/ PEDOT: PSS Heterostructure. IEEE Electron Device Letters 43, 2137-2140 (2022).
    9) Doping engineering of conductive polymer hydrogels and their application in advanced sensor. Chemical Science 10, 6232 (2019).(封面文章)
    10) Advanced Wearable Microfluidic Sensors for Healthcare Monitoring. Small 16, 1903822 (2020).
    11) Ballpoint-Pen Like Probes for Multipoint Dynamic Pulse Diagnosis System. IEEE Sensors Journal 22, 12253 (2022).



  • 导电聚合物:
    1)Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proceedings of the National Academy of Sciences of the United States of America 109, 9287-9292 (2012).
    2)Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications. Accounts of Chemical Research 50, 1734-1743 (2017).
    3)Dopant-enabled superamolecular approach for controlled synthesis of nanostructured conducting polymer hydrogels.Nano Letters 15, 7736-7741 (2015).
    4)3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy & Environmental Science 6, 2856-2870 (2013).
    5) Synthesis of Polyaniline Nanotubes with a Reactive Template of Manganese Oxide. Advanced Materials 19, 461–464 (2007) (封面文章)
    6) Hydrothermal Synthesis of Polyaniline Mesostructures. Advanced Functional Materials 16, 1279–1288 (2006)


  • 微结构调控与微尺度效应:
    1) Multifunctional superhydrophobic surfaces templated from innately microstructured hydrogel matrix. Nano Letters 14, 4803-4809 (2014)
    2) High-throughput recovery of viscous oil spill by gel-coated mesh with reversibly interfacial properties. Nature Sustainability, 6, 1654-1662 (2023)


联系方式
电话:
邮件:ljpan.nju.edu.cn
信箱:
办公地址:

联系我们

  • TEL:025-8968 0678

    E-MAIL:jhmin@nju.edu.cn

    ADDRESS: Electronic Building 

    (Panzhonglai Building), 163 Xianlin Ave., Qixia District, Nanjing, Jiangsu Province, 210023