电子学院报道超高增益柔性晶体管与电路

发布时间:2021-03-29浏览次数:825


可穿戴电子设备面临的关键问题是需要同时实现柔性、低功耗以及微弱信号的放大。有机分子由于材料的可设计性和本征柔性,一直是可穿戴电子的有力竞争者。制备高性能、高增益、低功耗的柔性晶体管及电路是有机电子领域的难点。

在过去的几十年里,从材料设计合成到器件和集成电路,有机电子都取得了显著的进展。目前,OLED已经广泛应用于商业化的移动终端显示。然而,仍然存在多个挑战阻碍了有机电子器件的进一步发展与应用。第一,有机半导体的迁移率普遍低于无机半导体,导致晶体管跨导和开态电流较低;第二,垂直方向的电荷传输和传统加工工艺引入的较高接触电阻,使得其难以应用于高频领域;第三,非理想的器件开关性能,限制了有机器件在电池和无线供电等低功耗场景的应用。


南京大学电子学院王欣然教授课题组与香港大学陈国梁教授课题组合作,结合液相法制备的大面积单层有机薄膜、具有负电容效应的铁电栅介质和无损伤的范德华集成工艺,成功制备了本征增益达5.3×104的有机薄膜晶体管。在此基础上制备了反相器和逻辑门等功能性电路,其中反相器的电压增益在3V工作电压下达到了1.1×104,是目前报道的最高值。进一步,集成实现了钮扣电池供电的柔性放大器芯片,可用于人体心电信号的检测与放大。该芯片可以将人体心电信号放大超过300倍,并保持高保真度,其检测微弱心电信号(如房颤波)的能力甚至超过当前医用的临床设备。

1:基于晶圆尺寸单层有机分子薄膜的亚热电子晶体管。

与二维层状原子晶体相似,由于层间和层内分子之间相互作用的各向异性,许多有机晶体也具有层状结构。研究团队通过优化溶液剪切法,成功地获得了晶圆尺寸均匀的单层有机薄膜(图1a,b)。该工艺与柔性衬底完全兼容,有助于大面积制造柔性有机器件与电路。研究团队开发出了一种无溶剂、低损耗的器件制备工艺,可以简单地将图形化的金属电极转移到有机薄膜上。与传统的图形化和金属蒸发工艺不同,该工艺可以保护相对脆弱的有机薄膜免受溶剂、高能金属颗粒和电子束辐射的影响,实现了高质量的金属-有机半导体界面和小于60Ωcm的超低接触电阻。

降低晶体管功耗的关键是降低工作电压,这最终受限于“开”态和“关”态之间过渡区域的陡峭程度,即亚阈值摆幅(SS)。由于玻尔兹曼极限的限制,室温下常规晶体管的SS被限制在60mV/dec之上。针对这个问题,研究团队将铁电氧化物引入有机晶体管结构中。负电容效应可以突破玻尔兹曼极限,并实现亚热电子(低于60mV/dec)开关(1d,e)。此外,负电容效应理论上可提供无限大的输出电阻,这是有助于实现超高本征增益(与输出电阻和跨导成正比)的关键参数。

2:超高增益有机放大器。

基于亚热电子单层有机晶体管,研究团队还制备了功能性的反相器和逻辑门。在3V工作电压下,反相器电压增益超过1.1×104,打破了使用不同材料的类似器件的记录(2)


3:基于低功耗、高增益有机电路的集成式生物传感。

研究团队还成功实现了超高增益有机晶体管和放大器的柔性化(图3a),其性能随弯曲不发生显著退化。基于该技术,研究团队集成化了1.5V钮扣电池供电的柔性放大器芯片(图3b,并成功应用于人体心电、脉搏等微弱信号的放大与检测。该芯片可以将心电信号放大超过300倍,并保持高保真度,在临床实验中检测出了微弱的房颤波信号,甚至优于当前医用的临床设备(图3e)。在人体脉搏信号的检测中,该芯片将脉搏信号放大900倍以上,在低电压下展现了优异的模拟信号放大性能。该研究表明,亚热电子有机晶体管技术有望应用于电池供电的连续健康监测,未来可以通过集成无线数据传输,进行云端的实时诊断。


该研究成果以 “Sub-thermionic, ultra-high-gain organic transistors and circuits”为题发表于Nature Communications期刊上((Nat. Commun.12, 1928 (2021) )南京大学王欣然教授与香港大学陈国梁教授为论文的共同通讯作者。南京大学罗中中博士、香港大学彭博宇博士、南京大学博士生曾俊鹏和于志浩博士为论文的共同第一作者。中国科学院微电子研究所刘明院士、李泠研究员,清华大学冯雪教授,南京大学施毅教授、潘力佳教授、何道伟副教授,南京大学附属鼓楼医院谢峻主任、史冬泉主任,天津大学黄显教授,香港城市大学陆洋教授等对该项目给予了大量支持和帮助。南京大学为第一完成单位。该项目得到了固体微结构物理国家重点实验室、人工微结构科学与技术协同创新中心、国家自然科学基金、江苏省自然科学基金、中国科学院战略重点研究计划、中央高校基本科研专项资金的支持。